IFORMULAS AND DEFINITIONS

The following formulas and definitions apply to all applications:

DEFINITION: Resistivity, ρ Ω mm²/m (Ω /cmf)

The resistance of a conductor, R_{20} , is directly proportional to its length, L and inversely proportional to its cross-sectional area, q:

$$R_{20} = \rho \frac{\ell}{q} \qquad \qquad \Omega \quad [1]$$

The proportional constant, ρ is defined as the resistivity of the material and is temperature dependent. The unit of ρ is Ω mm²/m (Ω /cmf).

DEFINITION: Temperature factor, C_{t}

Resistivity or change in resistance with temperature, is non-linear for most resistance heating alloys. Hence, the temperature factor, $C_{\rm t}$, is often used instead of temperature coefficient. $C_{\rm t}$ is defined as the ratio between the resistivity or resistance at some selected temperature T °C and the resistivity or resistance at 20°C (68°F).

$$R_T = C_t R_{20} \qquad \qquad \Omega \quad [2]$$

$$C_{t} = \frac{R_{T}}{R_{20}}$$
 [3]

$$C_t = 1 + (T - 20)\alpha$$
 [4]

DEFINITION: Surface load, p W/cm² (W/in²)

The surface load of a heating conductor, p, is its power, P, divided by its surface area, ${\rm A_c}$.

$$p = \frac{P}{A_c} \qquad \qquad \text{W/cm2 (W/in2)} \quad [5]$$

Wire

$A_c = \pi dL \times 10$	(metric) [6]
$A_c = \pi dL \times 12$	(imperial) [6]

Strip

$A_c = 2(b+t)L \times 10$	(metric) [7]
$A_c = 2(b+t)L \times 12$	(imperial) [7]

General formulas

$U = R_T I$	V	[8]
P = UI	W	[9]

Combining equations [8] and [9] gives:

Combining equations [2], [5], [8] and [9] gives:

$$\eta = \frac{A_c}{R_{20}} = \frac{I^2 C_t}{p} \qquad \qquad \text{cm2/}\Omega \text{ (in2/}\Omega\text{)} \quad \text{[10]}$$

The ratio $\frac{A_c}{R_{20}}$, used for determining wire, strip or ribbon size, is tabulated for all alloys in the handbook for 'Resistance heating alloys and systems for industrial furnaces'.

DEFINITION: Cross sectional area, g mm² (in²)

Round wire

$$q = \frac{\pi}{4} d^2$$
 mm2 (in2) [11]

Combining equations [1], [5], [6] and [11] gives the wire diameter, d:

$$d = \sqrt[3]{\frac{4\rho P}{\pi^2 p R_{20}}}$$
 mm (in) [12]

$$d = \sqrt[3]{\frac{4}{10\pi^2} \frac{\rho P}{pR_{20}}}$$
 (metric) [12]

$$d = \sqrt[3]{\frac{4}{15.28 \times 10^6 \times \pi^2} \frac{\rho P}{pR_{20}}}$$
 [imp.] [12]

Example:

 ρ = 1.35 Ω mm²/m (812 Ω/cmf) for Kanthal® D (according to section 2)

P = 1,000 W

 $p = 8 \text{ W/cm}^2 (51.6 \text{ W/in}^2)$

 $R = 40 \Omega$

Strip

$$q = bt$$
 mm2 (in2) [13]

DEFINITION: Number of turns. n

$$N = \frac{L_e}{s}$$
 [15]

DEFINITION: Coil pitch, s mm (in)

A round wire is often wound as a coil. For calculating coil pitch, s, the equation [16] applies:

$$\left[\frac{\pi(D-d)}{s}\right]^{2} + 1 = \left(\frac{\ell}{L_{e}}\right)^{2} \Rightarrow$$

$$s = \frac{\pi(D-d)}{\sqrt{\left(\frac{\ell}{L_{e}}\right)^{2} - 1}}$$
mm [16]

$$s = \frac{\pi(D-d)}{\sqrt{\left(\frac{1,000 \times \ell}{L_e}\right)^2 - 1}}$$

$$s = \frac{\pi(D-d)}{\sqrt{\left(\frac{12 \times \ell}{L_e}\right)^2 - 1}}$$
 (imperial) [16']

When the pitch, s, is small relatively to coil diameter, D, and wire diameter, d.

Than $\frac{s}{\pi (D-d)}$ << L, so that equation [16] can be simplified to:

$$s = \frac{\pi (D-d)L_e}{\ell} \qquad \qquad \text{mm (in)} \quad [17]$$

DEFINITION: Relative pitch, r

The ratio s/d is often used. It is called the relative pitch or the stretch factor, and may affect the heat dissipation from the coil.

$$r = \frac{s}{d}$$
 [18]

The ratio D/d is essential for the coiling operation, as well as the mechanical stability of the coil in a hot state.

FORMULAS FOR VALUES IN TABLES

In the chapter "Tables," the values for surface area, weight, and resistance of each material and dimension are calculated per meter. Additionally, cross-sectional area and area per ohm (Ω) are presented. The formulas below include unit corrections:

Metric units

Resistance per meter, $R_{20/m}$ Ω/m Based on equation [1]

Wire

$$R_{20/m} = \frac{4\rho}{\pi d^2}$$
 [1']

Strip

$$R_{20/m} = \frac{\rho}{ht}$$
 [1']

Weight per meter, m_

$$m = volume \times \gamma = q\ell \times \gamma => m_m = q\gamma$$

Wire

$$m_{m} = \frac{\pi d^{2} \gamma}{4}$$
 [19]

Strip

$$m_{\rm m} = bt\gamma$$
 [19]

Surface area per meter, $A_{C/m}$ cm²/m Based on equation [6] respectively [7]

Wire

$$A_{C/m} = 10 \times \pi d$$
 [6']

Strip

$$A_{C/m} = 10 \times 2(b+t)$$
 [7']

Cross sectional area, q mm² Based on equation [11], [13] respectively [14]

Wire

$$q = \frac{\pi}{4} d^2$$
 [11']

Strip

$$q = bt ag{13'}$$

Surface area per Ω cm²/ Ω Combining [1'] and [6'] respectively [1'] and [7']

Wire

$$\eta = \frac{A_{\text{C/m}}}{R_{\text{20/m}}} = \frac{10 \times \pi d \times q}{\rho} = \frac{10 \times \pi^2 d^3}{4\rho}$$

Strip

$$\eta = \frac{A_{C/m}}{R_{20/m}} = \frac{10 \times 2(b+t) \times bt}{\rho} = \frac{20(b+t)bt}{\rho}$$

Other equations which could be helpful

Length per kilo, L_{kg} m/kg Based on equation [19] $\rightarrow L_{kg} = \frac{1,000}{m_m}$

$$L_{kg} = \frac{1,000 \times 4}{\pi d^2 \gamma} = \frac{4,000}{\pi d^2 \gamma}$$
[19]

Strip

$$L_{kg} = \frac{1,000}{bt\gamma}$$
 [19']

Resistance per kilo, $R_{kg} - \Omega/kg$

Combining [1'] and [19]→

$$R_{kg} = 1,000 \times \frac{R_{20/m}}{m_m} = 1,000 \times \frac{R}{q} \times \frac{1}{q\gamma} = \frac{1,000 \times R}{q^2 \gamma}$$

APPENDIX

Wire

$$R_{kg} = \frac{1,000\times\rho}{\left(\frac{\pi d^2}{4}\right)^2\gamma} = \frac{16,000\times\rho}{\pi^2 d^4\gamma}$$

Strip

$$R_{\rm kg} = \frac{1{,}000 \times \rho}{b^2 t^2 \gamma}$$

Relationship between metric and imperial units

1 Ω mm²/m (μΩm) = 601.54 Ω /cmf 1 Ω mm²/m (μΩm) = 472.44 Ω /smf 1 Ω /smf = 1.2732 Ω /cmf

1 inch (in) = 1000 mil = 0.0254 m 1 foot (ft) = 12 in = 0.3048 m 1 mil = 0.001 inch = 0.0254 mm 1 W/cm² = 6.45 W/in² 1 W/in² = 0.155 W/cm²

Imperial units

 $\begin{array}{l} \rho \ '_{\text{wire}} = \Omega / cmf \quad respectively \\ \rho \ ' \ '_{\text{strip}} = \ \Omega / smf \end{array}$

Resistance per foot, $R_{20/ft}$ Ω/ft Based on equation [1]

Wire

$$R_{20/ft} = \frac{\rho'}{10^6 \times d^2}$$
 [1']

Strip

$$R_{20/ft} = \frac{\rho^{\prime\prime}}{10^6 \times bt}$$
 [1']

 $\begin{aligned} & \textbf{Weight per foot}, \, m_{_{m}} \quad lb/ft \\ & m = volume \cdot \gamma = q \cdot l \cdot \gamma \rightarrow m_{_{ft}} = q \cdot \gamma \end{aligned}$

Wire

$$m = volume \times \gamma = q\ell \times \gamma \Rightarrow m_{ft} = q\gamma$$
 [19']

Strip

$$m_{ft} = \frac{12 \times \pi d^2 \gamma}{4} = 3 \times \pi d^2 \gamma$$
 [19]

Surface area per foot, $A_{C/ft}$ in²/ft Based on equation [6] respectively [7]

Wire

$$A_{C/ft} = 12 \times \pi d$$
 [6']

Strip

$$A_{C/ft} = 12 \times \pi d$$
 [7']

Cross sectional area, q in² Based on equation [11], [13] respectively [14]

Wire

$$q = \frac{\pi}{4}d^2 \tag{11'}$$

Strip

$$q = bt [13]$$

Surface area per Ω in $^2/\Omega$ Combining [1'] and [6'] respectively [1'] and [7']

Wire

$$\frac{A_{C/ft}}{R_{20/ft}} = \frac{12 \times 10^6 \times \pi d \times q}{\rho'} = \frac{3 \times 10^6 \times \pi^2 d^3}{\rho'}$$

Strip

$$\frac{A_{C/ft}}{R_{20/ft}} = \frac{12\times 10^6\times 2(b+t)\times bt}{\rho^{\prime\prime}} =$$

$$\frac{24 \times 10^6 \times (b+t)bt}{\rho^{''}}$$

Other equations which could be helpful

Length per pound, L_{lb} ft/lb Based on equation [19] $\rightarrow L_{lb} = \frac{1}{m_{ft}}$

Wire

$$L_{lb} = \frac{4}{12 \times \pi d^2 \gamma} = \frac{1}{3 \times \pi d^2 \gamma}$$
 [19']

Strip

$$L_{lb} = \frac{1}{12 \times bty}$$
 [19']

Resistance per pound, $R_{lb} = \Omega/lb$

Combining [1'] and [19]→

$$R_{lb} = \frac{R_{20/ft}}{m_{ft}} = \frac{\rho}{q \cdot q \cdot \gamma} = \frac{\rho}{q^2 \cdot \gamma}$$

Wire

$$R_{lb} = \frac{\rho^{'}}{3\times10^{6}\times\pi d^{2}\times d^{2}\gamma} = \frac{\rho^{'}}{3\times10^{6}\times\pi d^{4}\gamma}$$

Strip

$$R_{lb} = \frac{\rho^{\prime\prime}}{12 \times 10^6 \times b^2 t^2 \gamma}$$